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Synthetic Data - Introduction
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What is synthetic data?

• Definition: "Data applicable to a given situation that are not 
obtained by direct measurement"
(Source: https://en.wikipedia.org/wiki/Synthetic_data )

• Synthetic data …
– is often explained through it's creation process (generation)

– is a broader term for narrower terms like anonymized, artificial and 
fully/pure synthetic data (see later) –

– sometimes also defined a subset of anonymized data 
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https://en.wikipedia.org/wiki/Synthetic_data


What is synthetic data?

• Synthetic Data tries to
– preserve the overall properties and 

characteristics of the original data

– without revealing information about actual 
individual data samples

• Other statement:
– "Balancing privacy and the demand for data

availability" (Practical Synthetic Data Generation 
(2020), Emam, Mosquera & Hoptroff, O'Reilly)
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Why synthetic data?

• Real data might have gaps and structural mismatches 
(compared to data that will be processed later) 

• Access to real data might be restricted 

• Real data might be subject to privacy

• Real data might be non-existent
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Applications of synthetic data

• Model training 
(machine learning, AI)

• Data anonymization 
(open data publishing)

• Software testing for reliability or scalability
(SW development, SW engineering) 

• Database performance optimization
(data engineering)
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Synthetic Data: Companies and industries

• Some industries (no claim to be complete):
– Medicine
– Government
– Computer Science and Data Science, etc. …

• Some companies (no claim to be complete): 
– MOSTLY AI, Wien AT, https://mostly.ai
– Synthesized, London UK, www.synthesized.io
– Gretel.ai, San Diego USA, https://gretel.ai
– Datacebo, Boston USA, https://datacebo.com/
– Syntheticus.ai, Zürich CH, https://syntheticus.ai
– itopia AG, Zürich CH, www.itopia.ch/en/key-issues/synthetic-data/
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Use Case of a point GAN by Syntheticus.ai
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Methods for generating synthetic data

• Statistical methods: 
– Mathematical models to generate data that have the same statistical properties as real data.
– Frequency distribution classification, Monte Carlo simulation, Gaussian mixture modeling, Markov chain.

• Rule-based methods: 
– Define rules or constraints that generate synthetic data. 
– A rule might be that a zip code must match the corresponding city.

• Data augmentation methods: 
– This involves adding noise, perturbations, or transformations to real data to create new, synthetic data. 
– Fuzzification, Differential Privacy.

• Database methods: 
– A database management system is used to generate synthetic data. Databases in turn use statistical and 

rule-based methods (functional dependency). Random number generators.

• Machine learning methods: 
– Training ML models on real data and then using these to generate synthetic data w/ similar characteristics. 
– Generative adversarial network (GAN) to generate new images that are similar
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Types of synthetic data (1 of 3)

• Fully synthetic data:
– completely artificially generated

– doesn't contain original data

• Partially synthetic data:
– only values of the selected sensitive attribute are replaced with synthetic 

data

• Hybrid synthetic data:
– generated using both original and synthetic data

(Source: Surendra & Mohan, 2017)
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Types of synthetic data (2 of 3)

• Synthesized Ltd. (2018) defined following computer-
supported data generation types:

• Anonymized data, produced by a 1-to-1 transformation from 
original data. Examples include noise obfuscation, masking, or 
encryption

• Artificial data, produced by an explicit probabilistic model via 
data sampling

• Synthetic data, produced by a model (configuration, rules) 
which in turn can be learned by statistics from original data
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Types of synthetic data (3 of 3)
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3.1 Anonymized data: Intro.

• Anonymization
– Modification of personal such that the individual details of personal 

circumstances can only be attributed to a natural person with a 
disproportionate expense of resources

– Goal 1: Maximize accuracy of responses to queries to databases

– Goal 2: Minimize probability of identifying the records used to respond

• Quantification of anonymity: 
– "Differential Privacy"

• Nice property: Applicable in realtime as part of queries as view on 
tables with productive data
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3.1 Anonymized data cont.

• Approaches
– Add noise or dummy data (similar pseudo-random GPS noise)
– Aggregate data: classic approach, expose only sum of at least 3
– Suppress/delete or swap data: see Differential Privacy

• Differential privacy: 
– Technique for ensuring that individual data points are protected when aggregate 

information is shared by adding or deleting data (noise) up to a certain value of
parameter epsilon (ε)

– Extension of K- and ε-anonymization

• Tool: 
– Differential Privacy by Google Repo; implements e.g. sum(), avg() etc.
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3.2 Artificial data generation

• A model is created by hand 

• which describes an observed behavior 

• or by configuring statistic values 

• (Agent-based modeling)
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Generation for Statistical 
Testing" by Soltana, 
Sabetzadeh, and Briand, 
University of Luxembourg 



3.3 Pure synthetic data generation

• Drawing model by example: 
– Observing real statistical distributions of original data

– Manual configuration is optional

• Tools:
– pgsynthdata
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3.3 Pure synthetic data: Challenges

• Outliers may be missing: Synthetic data can only mimic the real-
world data, it is not an exact replica of it. Outliers can be more 
important than regular data points.

• Quality of the model depends on the data source: Quality of 
synthetic data is highly correlated with the quality of the input data 
and the data generation model. Synthetic data may reflect the 
biases in source data.

• User acceptance: It's an emerging concept and may be new to users

• Synthetic data generation (still) requires time and effort.

(Adapted from: https://research.aimultiple.com/synthetic-data/ )
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Synthetic data: Statistical Evaluation

• How to generate test data that meet both requirements, 
validity and representativeness, at the same time in a scalable 
manner? 
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(Source 
https://www.slideshare.net/briand_lionel/sy
nthetic-data-generation-for-statistical-testing
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Synthetic data: Statistical Evaluation cont.

• For each of the datasets, perform following steps:
– For each attribute, generate a histogram visualizing both the 

distribution of the real and the synthetic data

– Compute the correlation coefficients and generate a heat map to 
visualize dependencies between attributes

– Measure the distance between the real and the synthetic data via row-
by-row computations of nearest neighbors

(Hittmeir et al. 2019)
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Synthetic data: Statistical Evaluation cont.
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(Source: Hittmeir et al. 2019)



Synthetic data: Experimental Evaluation

• Train various machine learning models
– with the original data w\ test set

– with synthesized data of same size

• Test them on the test set (taken from original data)

• Compare

(Hittmeir et al. 2019)
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Experimental Evaluation: Outlook

• Understand why synthetization works better on some dataset than 
others

• Influence
– Generation method
– Differential privacy
– Level of differential privacy (ε)

• Defining and quantifying the privacy levels and guarantees achieved 
by synthetic data

(Hittmeir et al. 2019)
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Synthetic data generation tools

• Faker
– Package in Python that generates fake data, like "first names"

– MIT License

– https://faker.readthedocs.io/

• Synthetic Data Vault (SDV) 
– Tools in Python to generate tabular synthetic data

– Business source lic. ("anti service" not OSS), maintanied by Datacebo
https://docs.sdv.dev/sdv/

• others…?

23.03.2023Synthetic Data Generation with PostgreSQL | Stefan Keller | FH OST 25

https://faker.readthedocs.io/
https://docs.sdv.dev/sdv/


… generation tools for PostgreSQL

• Tool PostgreSQL Anonymizer
– PostgreSQL license, Ruby, by Damien Clochard, Dalibo, Paris
– https://labs.dalibo.com/postgresql_anonymizer

• Tool PGFaker
– MIT license, TypeScript, by Imanpal Singh, India
– Weiterentwicklung von pg-anonymizer
– https://github.com/imanpalsingh/pg-faker

• Tool Google Differential Privacy
– Apache 2.0 license C++, by Google (not officially supported)
– https://github.com/google/differential-privacy

• Tool pgsynthdata
– MIT license, Python, by Institute for Software, OST Rapperswil
– https://gitlab.com/geometalab/pgsynthdata

23.03.2023Synthetic Data Generation with PostgreSQL | Stefan Keller | FH OST 26

https://labs.dalibo.com/postgresql_anonymizer
https://github.com/imanpalsingh/pg-faker
https://github.com/google/differential-privacy
https://gitlab.com/geometalab/pgsynthdata


The pgsynthdata Tool
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PostgreSQL internal statistics
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What is pgsynthdata?

• CLI tool for PostgreSQL, which creates
synthetic data

• Mathematic Model taken from
PostgreSQL internal statistics

• Little configuration needed
(configuration by comments, e.g. 
NAME_GENERATOR)

• Written in Python 
• MIT Open Source License 
• Maintainer: Institute for Software OST
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Source: Practical Synthetic Data Generation (2020), Emam, Mosquera & 
Hoptroff, O'Reilly



How does pgsynthdata work?
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Workflow:



pgsynthdata: Characteristics

• Able to generate synthetic data from various PostgreSQL 
databases and with generators for a wide range of data types

• Maintainable and  extensible with a plugin system and own 
generators (to be programmed in Python)

• Suitable at least for benchmarking

• In short:
– Easy-to-use, low config

– Easy-to-extend
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pgsynthdata: Outlook

• Possible extensions:
1. Generic faker for all base data types

2. Support for composite primary keys

3. Support for self-referencing foreign keys

4. Spatial data types Point, LineString, Polygon

5. Make it suitable for ML functionality (new training phase)

6. A bit under maintained

• Current developments spring semester 2023: 
– Student project of André Von Aarburg about (4) Point and (5) ML
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pgsynthdata extended by GeoPointGAN

• Student project spring semester 2023 (ongoing) 

• Goal: To implement the paper by
– Cunningham, Klemmer, Wen & Ferhatosmanoglu (2022). 

GeoPointGAN: Synthetic Spatial Data with Local Label Differential 
Privacy

– a generative model for geographic point coordinates with a privacy
mechanism

• …and to integrate it in pgynthdata
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GeoPointGAN: Visualization
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GeoPointGAN generated and privatized data: 311 caller locations in New York. 
(Source: Cunningham et al. (2022). GeoPointGAN…)



GeoPointGAN: Processing workflow
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GeoPointGAN pipeline including privacy mechanism.
(Source: Cunningham et al. (2022). GeoPointGAN…)



Discussion
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